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Due to strong 3D heterogeneities in offshore regions, conventional monitoring methods may misestimate source parameters
such as the duration and radiation energy. Estimations could become severe inaccuracies for small offshore seismic events
because high-frequency (> 1 Hz) seismograms, which are strongly affected by 3D heterogeneities, are only available for
analysis because of their signal-to-noise ratio. To investigate the effects of offshore heterogeneities on source parameter
estimation and monitoring for small seismic events, we analyzed both observed and simulated high-frequency seismograms
southeast off the Kii Peninsula, Japan, in the Nankai subduction zone. The model simulations demonstrated that the thick low-
velocity accretionary prism has significant effects on high-frequency seismic wave propagation. Especially for shallow tremors
occurring at depths just below the accretionary prism toe, seismogram durations are significantly broader than an assumed
source duration. Spindle-shape seismogram envelopes were observed even at such close stations. Our results suggest that
incorporating three-dimensional heterogeneities is necessary for practical estimation of source parameters and reliable

monitoring for small offshore events in the Nankai subduction zone.

Keywords : Nankai Trough, ocean bottom seismometer, heterogencous subsurface structure, simulation,

monitoring

1. Introduction

Recent developments of ocean bottom instruments (e.g., Aoi
et al., 2020[1]) provide us good opportunities to analysis
offshore seismicity just around the megathrust zones (e.g., Araki
et al., 2017[2]; Nishikawa et al., 2019[3]). In this report, we
introduce the study of high-frequency (> 1 Hz) seismic wave
propagation around ocean bottom seismometer (OBS) network
DONET for precise modeling and monitoring seismic sources
of offshore small seismic events in Nankai subduction zone,
including shallow slow earthquakes. Details were described in
the published paper of Takemura, Yabe & Emoto (2020)[4].

2. Observed seismograms at onshore and offshore
seismic stations

Examples of observed NS-component velocity seismograms
at onshore and offshore broadband stations. These event sizes are
almost similar, but the source duration of shallow tremor (bottom
panel of left part in Figure 1) is expected to be significantly longer
than other two regular earthquakes Onshore seismogram (upper
panel of left part in Figure 1) shows clear onset and short-duration
S wave. On the other hand, at offshore stations (middle panel of
left part in Figure 1), many reflected phases appeared after the S
arrival, and consequently, S-wave envelope was elongated. The
envelope shape of a shallow tremor is more complicated than
others, showing a spindle shape. These differences could be
caused by differences in the heterogeneous structures around
onshore and offshore seismic stations. The effects of offshore

heterogeneities can be evaluated by realistic 3D numerical
simulations of high-frequency seismic wave propagation.

3. Numerical simulations of seismic wave propagation
in a 3D heterogeneous structure model

‘We mainly discussed the simulation result of Event A in Figure
2a, which was a modeled source of a shallow tremor. The 3D
model (Figure 2bc) was constructed from the JIVSM (Koketsu
etal., 2012[5]) and shallower low-velocity (< 2.8 km/s) structures
(Tonegawa et al., 2017[6]). Although typical durations of shallow
tremors are longer than 10 s, we assumed a low-angle thrust
mechanism with a 0.2-s triangle-type moment rate function to
focus propagation features of high-frequency (> 1 Hz) seismic
waves. We used an open-source seismic wave propagation finite-
difference code of OpneSWPC (Maeda et al, 2017[7],
https://doi.org/10.5281/zenodo.3712649),
developed by our group.

which has been

Figures 2de show the simulated P and S wavefields of Event
A along X-X’ profile. Simulated waves were trapped and
amplified due to the accretionary prism (shallower sedimentary
structures). We assumed a pulsive (0.2-s) source on the plate
boundary, but simulated envelopes were characterized by unclear
onset and longer durations (Figure 3a). The durations of
simulated envelopes were broadened as increasing distance.
Although source time functions were completely different in
observed and simulated seismograms, this distance-dependence
feature was also confirmed in observed envelopes (Figure 3b).
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Figure 1. Examples of observed NS-component seismograms for a crustal earthquake, an offshore interplate earthquake, and a
shallow tremor (LFT). Crustal and offshore interplate earthquakes occurred on 24 January 2015 and 1 April 2016,
respectively. A shallow tremor occurred on 3 April 2016. The magnitudes of these events were approximately 3, and epicentral
distances were also similar. The blue and red stars in enlarged maps are the epicenters of regular earthquakes and shallow
tremor, respectively. The triangle and diamond symbols show the locations of the F-net and DONET stations, respectively.
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Figure 2. (a) Map of the simulation region and cross-sections of the (b) S-wave velocity model along the X—X' profile and (c)
S-wave velocity model at shallower (< 15 km) depths. The red and blue focal mechanisms are source models of a shallow
tremor and regular earthquakes, respectively. Simulated snapshots of (d) P and (e) S wavefields along profile X—X' for the
shallow tremor simulation.

Other simulation results of Events b and ¢ (interplate and 4. Conclusions and reliable seismic monitoring

intraslab regular earthquakes) were described in Takemura, Yabe In this report, we conducted numerical simulations of high-
& Emoto (2020)[b]. In the cases of deeper seismic sources, the frequency seismic wave propagation using a realistic 3D velocity
effects of the accretionary prism become small compared with a structure model. Simulation results show unclear S-wave onsets
simulation of shallow tremor. and spindle-shape envelopes even for a pulse-like source time
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Figure 3. Comparisons of (a) simulated RMS envelopes for frequencies of 1-5 Hz and (b) observed envelopes of a shallow tremor

at 22:36 on 16 April 2016 (JST).

function. It is indicating that characteristics of seismic sources on
the plate boundary cannot be resolved by convectional
approaches due to strong amplification and trap effects of the
accretionary prism just below seismic stations.

To achieve reliable monitoring of seismicity around the
megathrust zones in the Nankai subduction zone, the effects of
offshore heterogeneities, especially the accretionary prism, can
not be negligible. The Green’s function database derived from
large-scale simulations using a high-resolution 3D subsurface
structure model should be required for monitoring in future
studies.
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