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In this project, we have been developing the mathematical theory of synchronization phenomena in marine-earth science for
an application of the Numerical Analysis Repository. Specifically, to discover and elucidate synchronization phenomena latent
in marine-earth data, we are developing an analysis system based on a phase model for synchronization phenomena.
Furthermore, by generalizing and applying a mathematical method called the phase reduction method, we have been analyzing
various synchronization phenomena associated with the ocean, earth, and life. In this report, we present the direct numerical

simulation results for the forced synchronization of traveling and oscillating convection in a rotating fluid annulus subject to a

periodic external forcing. Further, we also make a brief report on the phase reduction analysis of a Karman vortex street.
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1. Introduction

Nature provides a rich variety of rhythmic systems and
synchronization phenomena. A rhythmic system is typically
described by a limit-cycle solution to an ordinary differential
equation. A phase reduction method, which enables us to describe
the dynamics of an oscillator using a single degree of freedom
called the phase, has been successfully applied to analyze the
synchronization properties of weakly coupled oscillators [1, 2].

However, there also exist thythmic spatiotemporal patterns
described by limit-cycle solutions or limit-torus solutions to
partial differential equations, and such rhythmic spatiotemporal
patterns can also exhibit synchronization phenomena. For
example, the synchronization of oscillatory thermal convection
has been experimentally observed in a rotating fluid annulus,
which is an analogue of atmospheric circulation [3-6]. Hence, the
project representative has recently formulated the phase
reduction methods for limit-cycle solutions and limit-torus
solutions to partial differential equations [7-12].

Now that the analytical methods have been developed, we
have started performing the direct numerical simulation and
phase reduction analysis of a rotating fluid annulus, which has
been the main subject since the beginning of our study.

2. Methods

Conservation of mass, momentum and energy equations for an
incompressible one-phase flow are solved based on Boussinesq
approximation to calculate a convective heat transfer in a rotating
tank. We used buoyantBoussinesqPimpleFoam in OpenFOAM

(Open source Field Operation And Manipulation) v2012, an
Open Source CFD toolbox, and implemented Coriolis and
centrifugal force on the solver.

The computational domain has cylindrical coordinates whose
inner radius is 25 mm, outer radius is 80 mm, and depth is 140
mm. The shape is consistent with the water tank used for the
experiment [3].

We used second-order schemes for the discretization of time
and spatial derivatives. All the boundaries are set to non-slip
boundary conditions. The inner and outer boundaries are 288.15
and 298.15 K, respectively. The other boundaries are isothermal
boundary conditions. The pressure gradient at all boundaries is

zero. The computational condition is shown in Table 1.

Table 1 Computational condition.

Rotation rate [rad/s] 1.6263
Temperature at inner wall [K] 288.15
Temperature at outer wall [K] 298.15
Temperature difference [K] 10
Kinematic viscosity [m?%s] 3.18 x 10°°
Gravitational acceleration [m/s?] 9.81
Thermal expansion coefficient [1/K] 3.69 x 10

3. Results

The flow pattern is 3AV (Amplitude Vacillation) flow in the
present condition, whose dominant wave number is 3 in the
azimuthal direction. Fig. 1 shows the temperature variation at z=
70 mm and r=52.5 mm. The periodic blinking of the temperature
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is observed as in Ref. [6], and the wave pattern of wave number
3 travels at a constant velocity.
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Fig. 1 Hovmoller diagram (z = 70 mm, r = 52.5 mm).
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The time evolution of the absolute value of the Fourier
amplitude of wave number 3 obtained by Fourier analysis of the
temperature with respect to azimuth is shown in Fig. 2.
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Fig. 2 Time evolution of temperature fluctuations
of the wave number 3.

As soon as the water tank begins to rotate, transient behavior
occurs until about 1000 s, and later the temperature oscillates.
The period of the oscillation gets close to a constant value with
time, and the oscillation period tr converges to 162.8 s in the
present study. From the above, we have succeeded to reproduce
oscillatory thermal convection in a rotating fluid annulus.

To study synchronization phenomena in rotating tanks,
periodic external forcing is applied to the temperature at the outer
boundary using the following equation [4,6]:

Ty =T + € sin(2rft),

where Tex is the temperature at the outer boundary, ¢ is the
amplitude of forcing (=0.05 K), 7'is the reference temperature, f

is the oscillation frequency (= 1/ tr), and ¢ is the time.

We investigated the range of oscillation frequency for the
synchronization between the frequency of external forcing and
that of wave number 3. As an example, the time history of the
oscillation period of the wave number 3 at tr= tr + 2 is shown in
Fig. 3. When longer periodic forcing than tr is applied to the outer
boundary, the oscillation period is initially smaller than the
original tr. However, the oscillation period finally matches tr by
increasing the oscillation period with time.
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Fig. 3 Time evolution of the wave number 3 with periodic forcing
(te=tr + 2 (=164.85)).

4. Concluding remarks

The forced synchronization of traveling and oscillating
thermal convection in a rotating fluid annulus subject to periodic
external forcing, which has been experimentally observed in Refs.
[4, 6], was reproduced by means of direct numerical simulation.
Although the results are not shown in this report, the phase
response of the oscillatory convection was also calculated by
applying an impulsive perturbation to the outer boundary. We are
now making a comparison of the forced synchronization between
the direct numerical simulation and the phase reduction analysis
using the phase sensitivity function obtained from the phase
responses. Further, using the phase sensitivity function, we will
also analyze the optimal waveform of the periodic external
forcing for the forced synchronization.

Finally, in this project, we have also developed an analytical
method for the synchronization phenomena of a Karman vortex
street. Specifically, we have formulated a theory for the phase
reduction of a Karman vortex street by a combination of the
phase reduction method for limit-cycle solutions to partial
differential equations with constraints [10] and the immersed
boundary projection method for incompressible flows over
bodies [13,14]. The theory has a wide range of applications in
geophysical fluids, biofluid mechanics, and fluid engineering.
Note that this study was conducted in collaboration with the
University of California, Los Angeles. Please see Ref. [15] for
the details.
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