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Numerical Simulations of Turbulent Mixing in Eruption Clouds
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Abstract Eruption clouds in explosive volcanic eruptions are a kind of free boundary shear flow with very
high Reynolds numbers (Re > 108), and their dynamics are governed by the entrainment of ambient air into
eruption clouds by turbulent mixing and the density change of eruption clouds accompanied by turbulent mix-
ing. We developed a numerical pseudo-gas model which correctly simulates turbulent mixing in and around
eruption clouds by employing three-dimensional coordinates, a high-order accuracy scheme, and a fine grid
size. Our model has successfully reproduced the quantitative features of turbulent mixing at high Reynolds
numbers observed in laboratory experiments as well as fundamental features of the dynamics of eruption
clouds, such as the generation of eruption columns and/or pyroclastic flows.
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1. Introduction
During explosive volcanic eruptions, a mixture of hot

ash (pyroclasts) and volcanic gas is released from the vol-
canic vent into the atmosphere. Such events are character-
ized by the formation of eruption columns and/or pyro-
clastic flows. Generally, the ejecta (i.e., pyroclasts and
volcanic gas) have an initial density of several times as
large as the atmospheric density since it contains more
than 90 wt% pyroclasts at the vent [1]. As the ejecta are
mixed with ambient air, the density of the mixture drasti-
cally decreases and becomes less than the atmospheric
density, because the entrained air expands by heating
from the hot pyroclasts. When the ejecta entrain sufficient
air to become buoyant, a large Plinian eruption column
rises up to a height of several tens of kilometers as a tur-
bulent plume. On the other hand, if the ejecta do not
entrain sufficient air and their vertical velocity fall to zero
before the eruption cloud becomes buoyant, a column
collapse occurs and the heavy and hot cloud spreads radi-
ally as a pyroclastic flow. Thus dynamics of eruption
clouds is governed by (1) the density change of the mix-
ture of the ejecta and air, and (2) the turbulent mixing in
and around the eruption clouds.

Previously, the dynamics of eruption cloud has been
studied on the basis of steady one-dimensional (1-D)
models [e.g., 2]. These models explain the fundamental

features of eruption column (e.g., column height) and the
condition for pyroclastic flow to generate; however, the
phenomena which can be explained by these models are
restricted to those of steady eruptions without any two-
dimensional (2-D) or three-dimensional (3-D) effects
(e.g., lateral spread of cloud and drift by wind). In order to
explain time-dependent fluid dynamical features of explo-
sive volcanism, several 2-D numerical models for erup-
tion clouds have been developed over the past 20 years [3,
4]. These 2-D models reproduced the density change
accompanied by turbulent mixing and explained the
unsteady and multiphase features of eruption clouds.
However, the features of turbulent mixing reproduced by
these models were not quantitatively consistent with those
observed in the laboratory experiments because of the low
spatial resolution in their numerical simulations [5].

The aim of this paper is to develop a 3-D numerical
model, which correctly reproduces both of the density
change of the mixture of ejecta and air, and the quantita-
tive features of turbulent mixing in and around eruption
clouds. On the basis of the new model, the flow patterns
near the vent are numerically simulated and some geolog-
ical implications of the simulations are discussed. 

2. Model Description
The numerical model of eruption cloud is based on the
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where ρ is the density of the mixture, u is the velocity
vector, and t is the time. The mass conservation equation
for the ejecta from the vent is independently given as

(2)

where ξ is the mass fraction of the ejecta.
The conservation equations for momentum and energy

are

where p is the pressure, I is the unit matrix, g is the gravi-
tational body force per unit mass, and E is the total ener-
gy per unit mass, that is, the internal energy (e) plus
kinetic energy (K): E = e + K.

2.2 Constitutive Equation
On the assumption that the differences of velocity and

temperature between pyroclasts and gas are zero, the
equation of state for the mixture of the ejecta and air is

(5)

where σ is the density of the pyroclasts, Rg and Ra are the
gas constants of volcanic gas and air, respectively, and 
T is the temperature. The mass fractions of pyroclasts
(ns), volcanic gas (ng), and air (na) satisfy the condition of
ns + ng + na = 1. The mass fraction of the ejecta in the
eruption cloud is given by ξ = ns + ng. The initial mass
fraction of volcanic gas (i.e., volatile content in the
magma) is given by ng0 = ng/(ns + ng) using these nota-

model of Suzuki et al. [5]. The model is designed to
describe the injection of a mixture of pyroclasts and vol-
canic gas from a circular vent above a flat surface of the
earth in a stationary atmosphere. In this paper, because we
are particularly concerned with turbulent mixing of erup-
tion clouds, we adopt a pseudo-gas model; we ignore the
separation of pyroclasts from the eruption cloud, and the
momentum and heat exchanges between the pyroclasts and
gas are assumed to be so rapid that the velocity and tem-
perature are the same for all the phases. These assumptions
are valid when the size of pyroclasts is sufficiently small
(< 4 mm) [6]. Sparks and Wilson [1] suggested that over
90% of the pyroclasts are less than 5 mm in diameter and
over 60% are submillimeter in diameter for typical Plinian
or phreatomagmatic eruptions. Pseudo-gas models are jus-
tified for such types of explosive eruptions.

The fluid dynamics model solves a set of partial differ-
ential equations describing the conservation of mass,
momentum, and energy, and a set of constitutive equa-
tions describing the thermodynamic state of the mixture
of pyroclasts, volcanic gas, and air. These equations are
solved numerically by a general scheme for compressible
flow with high spatial resolution. All the constants used
in this study are listed in Table 1.

2.1 Governing Equations
The dynamics of eruption clouds is based on the

Navier-Stokes equations of a compressible gas. Since the
molecular viscosity is negligibly small compared to the
eddy viscosity due to turbulence, we assume that the
molecular viscosity is zero and that the equations are
reduced to the Euler equation. The mass conservation for
all the components (pyroclasts, volcanic gas, and air) is

(1)

Table 1 List of Material Properties and Values of Physical Parameters. 

(4)

(3)
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tions. The subscripts s, g and a refer to pyroclasts, vol-
canic gas and air, respectively.

The change of internal energy is proportional to the
change of temperature: 

(6)

where Cvm is the average specific heat at constant vol-
ume, which is defined using the specific heats of pyro-
clasts (Cvs), volcanic gas (Cvg), and air (Cva) as

(7)

The subscript m in Cvm refers to the mixture of the
ejecta (i.e., pyroclasts and volcanic gas) and entrained air.
When the specific heats of each component (Cvs, Cvg, and
Cva) are constant, we can define the internal energy of the
mixture, e, in the equation of energy conservation (Eq.4)
such that

(8)

without loss of generality.

2.3 Boundary Conditions
The physical domain involves a horizontal and vertical

extent of more than several tens of kilometers. We carried
out the simulations in 2-D and 3-D coordinates for com-
parison. In the 2-D model, the vent is located in the lower
left-hand corner of the computational domain, in which
the pressure, exit velocity, mass fraction of volcanic gas,
temperature, and density are fixed and constant. The axis
of the flow is modeled as a free-slip reflector in order to
preserve the symmetry of the system in the 2-D model. In
the 3-D model, in contrast, the vent is located in the cen-
ter of the ground surface, and no boundary condition
along the central axis of the flow is required. At the
ground boundary, the free-slip condition is assumed for
the velocity of the ejected material and air. At the upper
and other edges of computational domain, the fluxes of
mass, momentum, and energy are assumed to be continu-
ous, and these boundary conditions correspond to free
outflow and inflow of these quantities.

We assume that the pressure at the vent (p0) is equal to
the atmospheric pressure at z = 0 km (pa0), and that the
exit velocity (u0) is larger than the sound velocity of the
ejecta. When the initial mass fraction of volcanic gas
(ng0), magmatic temperature (T0), and p0 are given, the
density of the ejecta (ρ0) is calculated from the equation
of state (Eq.5). When the vent radius (L0) and u0 are spec-
ified as parameters, the mass discharge rate is calculated
from the relationship as

(9)

2.4 Numerical Procedure
The partial differential equations (Eqs.1, 2, 3, and 4)

are solved numerically for ρ, ρu, ρE, and ρξ by the Roe
scheme [7] in space, which is a general total variation
diminishing (TVD) scheme for compressible flow and
can simulate a generation of shock waves inside and
around the high-speed jet correctly. The MUSCL method
[8] is applied to interpolate the fluxes between grid
points, and therefore our numerical model achieves third-
order accuracy in space. These equations are solved using
the time splitting method. We treat the gravitation term of
the equations of momentum and energy conservation
(Eqs.3 and 4), and the additional terms due to the curva-
ture of axisymmetric 2-D coordinates as source terms.
The density, velocity, total energy, and the mass fraction
of the ejecta are solved fully explicitly. The present
numerical code is based on the astronomical work of
Hachisu et al. [9], who reproduced most of the observa-
tional indications of mixing in SuperNova 1987A.

3. Density Change of Ejecta and Air Mixture
The density of the mixture of the ejecta and air at con-

stant pressure as a function of the mass fraction of the
ejecta can be analytically derived. When the ejecta with a
high temperature, T0, and air with a low temperature, Ta,
are mixed and reach thermal equilibrium at a constant
pressure, p, the equilibrium temperature for the mixture,
Tm, has the form

where Cp0 and Cpa are the specific heat of the ejecta and
air at constant pressure, respectively. At the same time,
this new mixture satisfies the equation of state as

where A is the volume fraction of the solid in the eruption
cloud: A=ρξns0 /σ (<< 1). Combining Eqs.10 and 11 and
using the equation of state for air (p=ρaRaTa), the mixture
density relative to air is obtained as

Fig. 1 illustrates the density change of the mixture on
the basis of Eq.12. The ejecta have an initial density of

(10)

(11)

(12)



Turbulent mixing in eruption clouds

38 J. Earth Sim., Vol. 8, Nov. 2007, 35–44

several times as large as the atmospheric density. As 
the ejected material is mixed with ambient air and the
mass fraction of the ejecta decreases, the density of the
mixture drastically decreases and becomes less than 
the atmospheric density. The density of the mixture is
also a function of magmatic temperature. As the mag-
matic temperature decreases, the critical mass fraction at
which the density of the mixture is equal to that of air
decreases. In the case that the magmatic temperature is
less than 400 K, the mixture is always heavier than air.
Such situations may be relevant to phreatomagmatic
eruptions [e.g., 10]. It must be noted that the density of
the mixture is also a function of the initial mass fraction
of volcanic gas, ng0. 

We reproduce the nonlinear features of the density
change of the mixture of the eruption cloud and air in 
Fig. 1 by changing the effective gas constant of the mix-
ture in the equation of state for ideal gases. The first term
of the right-hand side of Eq.5 represents the volume of
the solid phase in a unit mass of the mixture, and the sec-
ond term represents the volume of the gas phase. The first
term is negligible relative to the second term when the
pressure is close to atmospheric pressure (105 Pa),
because the density of the pyroclasts is 103 times as large
as that of the gas phase. Therefore Eq.5 can be approxi-
mated by the equation of state for an ideal gas as

(13)

where Rm is the average gas constant. Since the ratio of
specific heat at constant volume and constant pressure of

the mixture can be defined as

(14)

we can calculate the pressure at the position with an arbi-
trary mixing ratio using Eqs.8, 13, and 14 as

(15)

On the above assumption of the equation of state (i.e.,
Eq.13), we derive analytically the eigenvalues and eigen-
vectors for the governing equations of two fluids (i.e., the
ejecta and air) [11], and apply the Roe scheme to the
present problem of the dynamics of eruption clouds. After
the density, velocity, total energy, and the mass fraction
of the ejecta are calculated using Eqs.1, 2, 3, and 4, the
temperature and pressure are updated employing Eqs.8
and 15, respectively.

We compare the density change reproduced by the 3-D
numerical model with that analytically derived from
Eq.12 (Fig. 2). In this simulation it is assumed that the
mixture of hot pyroclasts and volcanic gas is ejected into
a uniform air. Our simulation has successfully reproduced
the nonlinear feature of equation of state.

4. Turbulent Mixing
The efficiency of turbulent mixing, in general, is a

function of the Reynolds number [12]. At Re < 104 , even
though the flow may be unsteady, the efficiency of mix-
ing increases with Re, and the resulting turbulent flow

Fig. 1 Variation of the mixture density of the ejecta plus ambi-
ent air as a function of the mass fraction of the ejecta 
in the mixture. The density is normalized by the atmos-
pheric density. Curves are shown for an initial mass frac-
tion of volcanic gas of 0.06 with an initial temperature of
400 K (red curve), 700 K (green curve), and 1000 K
(black curve). The temperature of atmospheric air is set
to be 303 K.

Fig. 2 The mixture density of the ejecta plus ambient air as a
function of the mass fraction of the ejecta in the mixture.
Red plots are the mixture density on all the grids in the
3-D simulation. Black curve is the mixture density on the
basis of Eq.12. The density is normalized by the atmos-
pheric density. The initial temperature and the initial
mass fraction of volcanic gas in the ejecta at the vent are
assumed to be T0 = 1053 K and ng0 = 0.06, respectively.
The temperature of atmospheric air is set to be 303 K.
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cannot be described as fully developed. On the other
hand, at Re > 104 the efficiency of entrainment no longer
depend on Re, and the turbulence is fully developed. We
call this transition to the fully turbulent flow (Re ~ 104)
"mixing transition". Because the flow of eruption clouds
is considered to be fully turbulent, the simulations of
eruption clouds should be carried out above the mixing
transition (Re > 104).

A number of theoretical and experimental studies on a
fully-developed turbulent jet or plume which is ejected
from a nozzle into a uniform environment (refereed to as
"JPUE") have revealed that such a JPUE is characterized
by the self-similarity that the radial length scale is propor-
tional to the distance from the nozzle (or a virtual point of
origin). This means that the evolution of the JPUE is
determined solely by the local scales of length and veloci-
ty [13]. Experimental studies have also shown that the
time-averaged horizontal profile of jet can be approximat-
ed by the Gaussian profile and its width represents the
efficiency of entrainment.

The above features of JPUE result from the two process-
es of turbulent mixing: (1) engulfment process [14] and (2)
diastrophy and infusion processes [15]. The engulfment of
ambient fluid is caused by the large-scale structures of tur-
bulence. Subsequently, turbulent straining of the entrained
fluid reduces its spatial scale to a small enough value at
which viscous diffusion dominates (diastrophy). Finally,
because of viscous diffusion, the inducted fluid is mixed at
the molecular level with the turbulent flow (infusion). The
global features of turbulent mixing above the mixing tran-
sition such as a self-similarity are mainly controlled by the
engulfment process. The diastrophy and infusion processes
are associated with smaller-scale vortices than those of the
engulfment process. In order to reproduce these processes
of turbulent mixing numerically, we consider two factors
of numerical procedure: (1) three dimensionality and (2)
spatial resolution. Since the large-scale structures of turbu-
lence are 3-D in general, the engulfment process should be
reproduced on 3-D coordinates. In addition, the grid size
should be small enough to resolve the large-scale struc-
tures of the engulfment process [16].

In the following, we systematically evaluate the effects
of the above two factors on the entrainment process. For
this purpose, we carried out simulations for the case of
the JPUE, whose qualitative and quantitative features
were experimentally investigated by a number of previ-
ous workers [e.g., 17]. In these simulations, it is assumed
that both the ejected and surrounding fluids are air with
the same temperature (T = 273 K) and the same ratio of
specific heat (γ = 1.40). The numerical conditions for the
simulations of JPUE (e.g., grid size and number of grid
points) are summarized in Table 2.

4.1 Effects of Three Dimensionality
We simulate the turbulent jet with axisymmetric 2-D

and 3-D coordinates and compare our results with the
experimental studies from the viewpoint of self-similari-
ty. In the 3-D simulations, the ejected fluid exhibits a
meandering instability where the axis of the flow varies
with height, which causes efficient turbulent mixing of
the ejected and surrounding fluids (Fig. 3a). As a result,
the radius of jet increases linearly with height. These fea-
tures are consistent with the laboratory experiments [17].
On the other hand, in the axisymmetric 2-D simulations,
the ejected fluid rises along the central axis and the
spreading rate of the jet is substantially smaller than the
results of the 3-D simulations (Figs. 3b and 4). This dif-
ference implies that the efficiency of turbulent mixing is
significantly reduced because of the boundary condition
at the centerline of the axisymmetric coordinates and
underpins the significance of the 3-D coordinates for the
simulation of turbulent mixing.

4.2 Effects of Spatial Resolution
High spatial resolution can be attained by (1) high-

order accuracy schemes and (2) fine grid sizes. We evalu-
ate these two effects here. Fig. 3a indicates that the third-
order accuracy scheme with a fine grid size reproduces the
turbulence containing the various scale of vortices, which
causes efficient turbulent mixing of the ejected and sur-
rounding fluids. On the other hand, in the simulations of
the first-order accuracy scheme with the same grid size
(Fig. 3c) or those of the third-order accuracy scheme with
a coarse grid size (Fig. 3d), the vortical structures of the
JPUE are not correctly reproduced. In these simulations,
the spreading rate of the jet is smaller than that of the 3-D
simulation using the third-order accuracy scheme with a
fine grid size, suggesting that the efficiency of entrain-
ment is substantially reduced in these simulations (Fig. 4).

We also compare our results with the experimental

Table 2 Numerical Conditions of the Simulations of Turbulent
Jets.
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Fig. 3 Numerical results of turbulent jets ejected into the same fluid. The color illustrates the cross-sectional
distribution of the mass fraction of the ejected fluid. The horizontal distance from the centerline and 
the vertical distance from the nozzle are represented by x and z, respectively. (a) Simulation of the third-
order accuracy scheme with ∆x = L0/5 in 3-D coordinates where ∆x is the grid size, L0 is the nozzle
radius. (b) Simulation of the third-order accuracy scheme with ∆x = L0/5 in 2-D coordinates. 
(c) Simulation of the first-order accuracy scheme with ∆x = L0/5 in 3-D coordinates. (d) Simulation of
the third-order accuracy scheme with ∆x = L0/1 in 3-D coordinates. 

Fig. 4 Velocity profiles across a turbulent jet. Vertical axis rep-
resents the vertical velocity normalized by the centerline
value (uc). Horizontal axis represents dimensionless dis-
placement (x/z). Curves a, b, c, and d are the time- aver-
aged velocity profiles at fixed cross sections for the sim-
ulations of Fig. 3a, 3b, 3c, and 3d, respectively. The
heights of the cross sections are shown by arrows in 
Fig. 3 (z = 30 m). Curve e illustrates the simulation of
the third-order accuracy scheme in 3-D coordinates with
∆x = L0/8.

Fig. 5 Half-width of flow as a function of the number of grid
points in nozzle radius when the vertical profile is
approximated by the Gaussian profile. The heights of the
cross sections are shown by arrows in Fig. 3 (z = 30 m).

hand, the width of jet represents the efficiency of mixing.
Therefore, we investigate the dependency of the width of
jet on the grid size (or the number of grid in nozzle
radius) (Fig. 5). The normalized width of flow increases
as the number of grid (N) increases when N is less than 4,
and asymptotically approaches a constant value when N
is more than 4. These results are consistent with the gen-
eral feature of turbulent mixing reported by the experi-
mental studies. It is suggested that the condition above
the mixing transition is achieved when N > 4.

studies from the viewpoint of the dependency of the effi-
ciency of mixing on "the numerical Reynolds number"
(Re*). In a numerical simulation of fluid dynamics, Re*
increases with increasing spatial resolution. On the other
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4.3 Summary of Treatment for the Turbulent
Mixing

According to the previous experimental studies of
JPUE, the key step in the entrainment process during tur-
bulent mixing is the one that controls the rate at which
ambient fluid enters into the turbulent region, i.e., the
engulfment process [18]. Judging from the numerical
simulations for the JPUE, it is essential to apply 3-D
coordinates with a sufficiently high spatial resolution in
order to correctly reproduce the engulfment process; sim-
ulations should be carried out above the mixing transition
where the efficiency of entrainment is independent of Re*
(i.e., independent of grid sizes). 

5. Turbulent Mixing in Eruption Clouds
Turbulent jets and plumes of eruption clouds differ in

several ways from the ideal situations of the JPUE. In
eruption clouds the magnitude of buoyancy drastically
changes with the amount of entrained air due to the non-
linear feature of the equation of state (Fig. 1), whereas the
relationship between ρ and ξ can be approximated by a
linear function in the case of the JPUE. Secondly, the sur-
rounding atmosphere is not uniform but stratified.
Thirdly, the length scale of source (i.e., crater size) can-
not be ignored near the vent in comparison with the
downstream distance from the vent in the natural volcanic
system. Because of these differences, the assumption of
self-similarity is not necessarily valid for the flow of
eruption clouds. In the preceding section we have devel-
oped a numerical model which can reproduce the general
features of turbulent mixing in the JPUE. We perform the
numerical simulations for the actual conditions of explo-
sive eruptions into a stratified environment, and systemat-
ically investigate how the features of turbulent mixing
and the flow patterns are modified.

Our simulations have reproduced the behavior of erup-
tion clouds including eruption columns and/or the forma-
tion of pyroclastic flows and the unsteady and multi-
dimensional features of eruption clouds. Table 3 lists 
the initial conditions and numerical conditions for the
simulations. In Runs 1, 2, and 3, an initial temperature of
T0 = 1000 K and initial mass fraction of volcanic gas of

ng0 = 0.05 are assumed. We increase vent radius from 69
to 613 m and see how the flow patterns change in these
runs. In Run 4, we use a lower temperature condition 
(T0 = 400 K, ng0 = 0.10) with a small vent radius (20 m)
for comparison. Following the results of simulations of
turbulent jets (section 4), ∆x is set to be L0/5 (see Table 3
for the grid sizes and the number of grid points). We use
512 processors (i.e., 64 nodes) of the Earth Simulator
with 640 gigabyte of memory.

In the case that the vent radius is small (69 m in Run
1), a stable eruption column forms; the eruption cloud
becomes buoyant before the initial momentum at the vent
is exhausted (Fig. 6a). The flow is characterized by a con-
centric structure consisting of an outer shear region and
inner dense core. In the outer shear region, the ejecta and
ambient air are efficiently mixed by the eddy due to shear
so that the density of the mixture becomes less than that
of air. In the inner dense core, the ejecta are not mixed
with ambient air. As the eruption cloud ascends, the inner
dense core disperses because of erosion by the outer shear
region; the eruption column rises as a fully turbulent
plume.

In the case that the vent radius is large (218 m in Run
2), the outer shear region cannot reach the central axis
before the initial momentum is exhausted (Fig. 6b). The
inner dense core is maintained up to a height of 2 km and
the top of the inner dense core subsequently spreads radi-
ally. This structure is called as "the radially suspended
flow". Then inner dense core and outer shear region are
mixed by the large-scale eddy of the suspended flow.
Consequently, the resultant mixture becomes buoyant and
produces another type of stable column.

When the vent radius is extremely large (613 m in Run
3), the eruption column collapses to spread radially as a
pyroclastic flow (Fig. 6c). Only a small amount of air is
entrained into the eruption cloud in the case of large vent
radius, so that, the most parts of the mixture due to the
suspended flow remain heavier than air and collapses to
the ground. The upper region of the pyroclastic flow
entrains air and forms buoyant co-ignimbrite ash clouds.

When the initial temperature is low and the vent radius
is small (Run 4 with T0 = 400 K and L0 = 20 m; Fig. 6d),

Table 3 Input Parameters and Numerical Conditions of the Simulations of Eruption Clouds.
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the column collapse occurs without inner dense core
developing a suspended flow; collapse occurs after the
inner dense core disperses because of erosion by the outer
shear region. Although a jet with a small vent radius effi-
ciently entrains ambient air before the initial momentum
is exhausted, the mixture of the ejecta and air is always
heavier than air when T0 is as low as 400 K (Fig. 1). As a
result, all the eruption cloud collapses to the ground and
cannot generate a co-ignimbrite ash cloud from a pyro-
clastic flow [cf. 10].

As described above, the flow pattern of eruption cloud
varies depending on the vent radius. A column with a

small vent radius behaves as a typical turbulent plume
and approximately attains the self-similarity. On the other
hand, when the vent radius is large, eruption clouds
shows multi-dimensional features and the self-similarity
is not attained. 

In the case of JPUE, it is essential to apply 3-D coordi-
nates in order to correctly reproduce the self-similarity
observed in laboratory experiments (see Section 4). We
also simulate the eruption cloud for the same condition as
Run 1 with axisymmetric 2-D coordinates and investigate
the effects of three-dimensionality on the dynamics of
eruption clouds. In the 3-D simulation, the radius of flow

Fig. 6 Representative numerical results of (a) stable column regime (Run 1), (b) stable 
column regime which is characterized by the suspended flow of the inner dense core
(Run 2), (c) column collapse regime which is characterized by the suspended flow
(Run 3), and (d) column collapse regime (Run 4). Parameters used and conditions at
the vent are listed in Tables 1 and 2. Cross-sectional distributions of the mass fraction
of the ejecta ξ are shown in x-z space. The contour levels in plots are ξ = 0.97. We call
the region where the mass fraction of the ejecta is 1.0 the inner dense core. It is sur-
rounded by the outer shear region, where the ejecta entrain ambient air.



Y. J. Suzuki

43J. Earth Sim., Vol. 8, Nov. 2007, 35–44

increases linearly with height as a result of the efficient
mixing by the meandering instability (Fig. 7a). On the
other hand, in the axisymmetric 2-D simulations, the
ejecta rise along the central axis and the column is sub-
stantially higher than the results of the 3-D simulations
(Fig. 7b). This difference implies that the efficiency of
turbulent mixing is significantly reduced because of the
boundary condition at the centerline of the axisymmetric
coordinates and that the three-dimensionality plays an
important role in simulating the dynamics of eruption
clouds such as column heights.

6. Geological Implications
The dynamics of eruption clouds are governed by tur-

bulent mixing between eruption clouds and ambient air
and the density change of eruption clouds accompanied
by turbulent mixing. Previously, the fluid dynamics and
the thermodynamics of eruption clouds have been studied
on the basis of steady one-dimensional (1-D) models
[e.g., 2]. In the steady 1-D models, turbulent mixing
between eruption clouds and ambient air are modeled by
the entrainment hypothesis that the mean inflow velocity
across the edge of turbulent flow (jet and/or plume) is

proportional to the mean vertical velocity; the proportion-
ality constant (i.e., entrainment coefficient) represents the
efficiency of turbulent mixing. The entrainment hypothe-
sis is supported by the laboratory experiments where the
diameter of turbulent jet injected into a uniform environ-
ment linearly increases with the distance from the source.
The steady 1-D models using the entrainment coefficient
based on those laboratory experiments have accounted for
fundamental features of a steady state of eruption clouds
and the critical conditions for column collapse. However,
these results of the steady 1-D models largely depend on
the assumed value of entrainment coefficient. Besides,
the steady 1-D models could not describe unsteady and
multi-dimensional features of actual eruption clouds. 

In the present study, we have developed a 3-D fluid
dynamics model which simulates turbulent mixing in and
around eruption clouds without any a priori assumptions.
Our model reproduces the quantitative features of turbu-
lent jets and plumes observed in the laboratory experi-
ments, and it has also successfully reproduced the basic
features of eruption clouds such as generation of eruption
columns and column collapse. In addition, it has repro-
duced unsteady and multi-dimensional features of erup-

Fig. 7 Numerical results of eruption clouds at 200 s from the beginning of eruption in Run 1.
(a) Simulation of 3-D coordinates. (b) Simulation of axisymmetric 2-D coordinates.
The color illustrates the cross-sectional distribution of the mass fraction of the ejecta
(pyroclasts plus volcanic gas). Parameters used and conditions at the vent are listed in
Tables 1 and 2. 
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tion clouds such as a suspended flow and pyroclastic flow. 
Our model is expected to be useful for volcanological

problems in several ways. First, we can systematically
investigate unsteady and multi-dimensional fluid dynami-
cal phenomena observed in actual volcanic eruptions. For
example we can simulate the dynamics of large-scale
umbrella clouds which are directly observed in satellite
images during explosive eruptions by using 1600 proces-
sors (i.e., 200 nodes) of the Earth Simulator with 1 terabyte
of memory for 12.3 billion grid points (2040 × 2040 × 506
grid points). Our model would also be useful to improve
the quality of existing 1-D steady models which can run
standard personal computers. Through the comparisons
between the results of our 3-D simulations and those of the
steady 1-D models, we can propose preferable values of
the entrainment coefficient to predict eruption column
dynamics correctly during steady explosive eruptions.
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