Development of High-Speed and Highly Accurate Numerical Analysis Technology of Rotating Machine by 3-D Finite Element Method

Project Representative

Masanori Nakamura TOYO DENKI SEIZO K.K.

Authors

Masanori Nakamura^{*1}, Yoshihiro Kawase^{*2}, Tadashi Yamaguchi^{*2}, Tomohito Nakano^{*2}, Noriaki Nishikawa^{*3}

- * 1 TOYO DENKI SEIZO K.K.
- * 2 Gifu University
- * 3 Japan Agency for Marine-Earth Science and Technology

Abstract

The improvement of efficiency of rotating machines has been strongly desired to address environmental problems.

The aim of this project is to develop a parallel computing method using the 3-D finite element method for the magnetic field analysis of rotating machines, and to achieve the high-speed and highly accurate large-scale magnetic field simulation of rotating machines.

In this report, a large-scale numerical analysis for eddy current in laminated cores of an interior permanent-magnet motor is achieved. The eddy current in the laminated cores caused by axial flux is simulated by using Earth Simulator.

Keywords: rotating machine, magnetic field analysis, finite element method with edge elements, laminated core