平成24年2月24日 理化学研究所計算科学研究機構セミナー室
HPCI戦略プログラム 分野3
地震津波課題ワークショップ
へ東北地方太平洋沖地震を踏まえて〜
津波の予測精度の高度化に関する研究

SPHとDEMによる 津波と構造物の連成シミュレーション

独立行政法人海洋研究開発機構 地球内部ダイナミクス領域 阪口 秀・西浦泰介

津波の予測精度の高度化に関する研究

津波伝播・到達時刻の予測

遡上域・浸水深の予測

災害状況の予測

津波の予測精度の高度化に関する研究

津波伝播・到達時刻の予測

遡上域・浸水深の予測

災害状況の予測

防災・減災・救助・復旧・復興に 必要な情報を与える

流れがモノを壊し、壊れたモノが流れ、流れたモノがモノを壊し、・・・

津波災害シミュレーションに求められること

単なる津波遡上計算だけでは不十分

1)流れによる構造物・地盤の変形・破壊

2)破壊した構造物や破片などの漂流

3) 漂流物の衝突による2次破壊

の複雑数値モデルが必要!

津波災害予測のための複雑数値モデル

流体+固体の連成モデル

固体の変形・破壊モデル

多自由度系の固体モデル

固体-固体間の衝突モデル

SPHとDEMの連成手法

□Kernel 関数

➤Quintic function

$$W(r,h) = \frac{21}{16\pi h^3} \left(1 - \frac{q}{2}\right)^4 \left(2q + 1\right) \qquad 0 \le q \le 2 \qquad q = \frac{r}{h}, \ r = |\vec{r}_a - \vec{r}_b|$$

SPHとDEMの連成手法

ロDEM (マクロパーティクル)の運動方程式 $\frac{d\vec{v}_{g}}{dt} = \vec{g} + \frac{\sum \vec{F}_{ss}}{m_{g}} + \sum \vec{F}_{sf} \qquad \frac{d\vec{\omega}_{g}}{dt} = \frac{\sum \vec{F}_{ss} + \vec{r}_{gs} \times \vec{F}_{sf} m_{g}}{I_{g}}$

□SPH-DEM相互作用

▶固体が存在しない場合の流体速度 v_fを求め、その流体速度を固体粒子 速度に修正する力を相互作用力とする

 $\vec{F}_{sf} = \sum_{f} \frac{m_{f}}{\rho_{f}} \vec{f}_{sf} W_{sf} \qquad \vec{F}_{fs} = \sum_{s} \frac{m_{f}}{\rho_{f}} \vec{f}_{fs} W_{fs} \qquad \begin{cases} \vec{v}_{f} = \vec{v}_{f}^{n} + (\pm j) \mp j + \pm j) \\ \vec{v}_{f} = \vec{v}_{f} + (\pm j) \mp j + \pm j) \\ \vec{v}_{f} = \vec{v}_{f} + \vec{v}_{f} + \vec{v}_{f} + \vec{v}_{f} \\ \vec{v}_{f} = \vec{v}_{f} \\ \vec{v}_{f} \\ \vec{v}_{f} = \vec{v}_{f} \\ \vec{v}_{f} \\ \vec{v}_{f} = \vec{v}_{f} \\ \vec{$

 $\vec{v}_{\rm s} = \vec{v}_{\rm g} + \vec{r}_{\rm gs} \times \vec{\omega}_{\rm g}$

□境界条件

▶滑り無し境界

壁に固定された固体粒子を想定し、上記のSPH-DEM相互作用力を働かせる

SPHとDEMの連成:計算精度の検証

 PARIで行われた標準的な実験(ダムブレイク +ブロック上での圧力測定)と計算の比較

SPHとDEMの連成:計算精度の検証

SPHとDEMの連成:計算精度の検証 Couette Flow

SPHとDEMの連成:計算精度の検証 流体力のレイノルズ数依存性

津波高さ2m : 堤体+捨石: 堤体は弾性体で地面に完全固定

津波高さ2m : 堤体+捨石: 堤体は自重と捨て石の重さで安定

例題計算:防波堤の越流・転倒・破壊

津波高さ2m : 堤体+捨石: 堤体は破壊可能

例題計算:住宅の浸水・漂流・衝突

津波高さ2m: 住宅は空洞構造

SPHとDEMの連成手法の問題点

□DEMでモデル化された固体の構成則・破壊基準の表現が曖昧

粒子の連結モデルと連続体モデルとの関係を明確にするべき

破壊までは東大地震研究所堀先生らのFEM-βとの連成、破壊後DEMの モデル化を現在構築中

■SPHの解像度が曖昧

構造物の隙間や、構造物と地盤の隙間、地盤の空隙などの流れが重要

■SPHもDEMも計算が遅い

莫大な数のSPH粒子とDEM粒子に対する高速計算技術が必要

→ 京でのチューニングと性能試験を実行中

まとめと議論

防災シミュレーションの現状

≻流体力の見積もりと各部材強度、接合部強度などのよりリアルなモデル化が必要 >実データとの比較によって津波災害シミュレーションの予測精度の確保が必要

次世代スパコンを用いた地震津波防災の未来像

>シシミュレーションによる津波災害の最小化条件を見出し、街づくりや復興計画に貢献

SPHとDEMの連成:例題計算条件

SPH粒子

粒子数:350,000 ~ 4,000,000 (影響範囲2粒子) 物性: 水を想定、人工粘性は不使用 その他: 20ステップに1回の割合で、Shepard Filterによる密度再初期化による 圧力振動制御

DEM粒子

- 粒子数:10,000~40,000
- 物性: 固体内部は面心立方格子によるQDEM弾性体、表面はクーロン摩擦のあるDEM

実行環境

ハードウエア: GPU GeForce GTX 460 OEM 及びTesla-C2070
プロセッサコア数: 336個及び446個
メモリ: 2GB~6GB
実計算時間:約2~10時間/100万ステップ